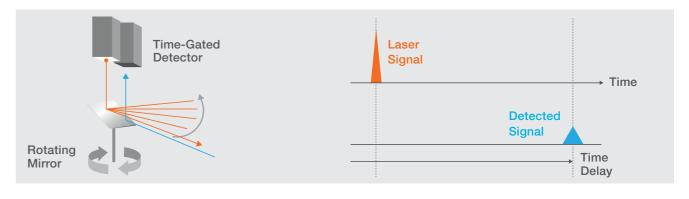


Infrared lasers for industrial LiDAR applications Selection guide and product portfolio

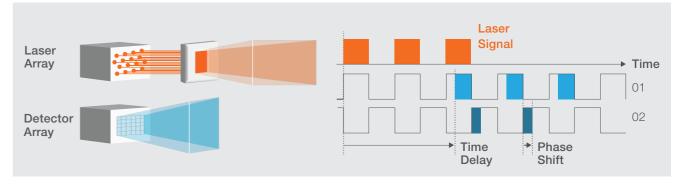
Light is OSRAM

Strongest LiDAR portfolio with Edge Emitting Laser (EEL) and Vertical Cavity Surface Emitting Laser (VCSEL)

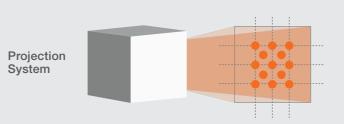

LiDAR (Light Detection and Ranging) systems in industry applications enable industrial automation, traffic control, range finders and many more. Those systems are based on different measurement techniques such as structured light, direct and indirect time of flight (ToF). For direct time of flight a very short laser pulse is emitted, reflected by an object and detected. By scanning the environment and measuring the travel time of the laser pulse a 3D depth map is obtained. With the help of the created map e.g. cleaning robots can savely navigate throughout your apartment and indutrial robots can identify human workers to prevent harmful interactions.

OSRAM Opto Semiconductors offers the strongest LiDAR portfolio on the market with VCSELs and EELs. OSRAMs Nanostack technology offers the highest optical output power from a single edge emitting laser. The variety of EEL package designs (TO, Plastic, SMT) allows application flexibility and serves a great spectrum of different power classes. The existing VCSEL portfolio by OSRAM Opto Semiconductors is offering various power levels and illumination patterns. Additionally OSRAMs new PowerBoost VCSEL Technology is delivering market leading optical power and efficiency, increased power densities as game changer for future LiDAR developments.

Measurement techniques for LiDAR

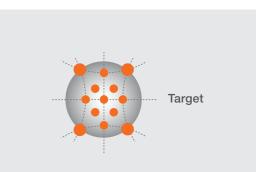

Direct Time of Flight (dToF)

- Infrared source generates an extremely narrow pulse with high power limited by eye safety standards
- A time-gated detector determines when the signal returns from the source to calculate object distance


Indirect Time of Flight (iToF)

- Illumination source is pulsed continuously with a 50% duty cycle (pulse train)
- Diffuser converts beam shape into uniform illumination over target

Structured Light


- IR source projects a known illumination structure into the environment (dots, stipes, pattern)
- High resolution camera is coated with a high-resolution IR bandpass filter to only image dot structure

Varying detectors are used (PIN, APD, SPAD) for many different technologies to scan an illuminated field
 Resolution is dependent on pulse width

Specialized detector array finds the temporal phase shift between two phase-locked detectors
Detector measures both delay and shift in pulse train with resolutions smaller than the pulse width

 Captured image triangulates object depth with high resolution with conventional imaging sensors (kHz)

Selection guide: VCSEL or EEL LiDAR emitter comparison

* symmetric on chip level, asymmetric distribution possible on package level

Edge Emitting Lasers (EELs)

- The Nanostack technology with three vertical emitters offers the highest optical output power
- Narrow rectangular design results in asymmetric beam profile requiring (corrective) optics

Vertical Cavity Surface Emitting Lasers (VCSELs)

- Stable light with a short cavity height
- Multiple lasers (apertures) are built on a VCSEL chip to increase power
- Large quantity of apertures reduce speckle in IR illumination

Selection guide: VCSEL or EEL "The right choice for your needs"

Direct time of flight							
Application Requirement	Laser Feature	VCSEL	EEL				
Ability to project a high power	High power density						
density pulse for long range	High speed	 	 				
High resolution in wide	Narrow spectrum	 	 				
variety of environments	Stable spectrum	 					
Optimized package	Low inductance	 	 				
design	High thermal conducti	vity	~				

Indirect time of flight

Application Requirement	Laser Feature	VCSEL	EEL	
Ability to project a clean	High speed			
pulse train for scanning	Pulse consistency	 		
High resolution in wide	Narrow spectrum	 	\checkmark	
variety of environments	Temperature stable	~		
Compact, efficient solution	High efficiency	 	~	
for low power monitoring	Monitoring diode	~		

Structured Light

Application Requirement	Laser Feature	VCSEL	EEL
Ability to build on a light pattern with the	Narrow spectrum	✓	✓
use of diffractive optical elements (DOE)	Narrow beam	 	~
Multiple point sources to improve	Die layout customizable	\checkmark	
resolution in a structured light pattern	2D source layout	\checkmark	
Optics can be integrated or closely	Top emission	\checkmark	
placed to compact	Integrated optics	\checkmark	

LiDAR emitter product portfolio

EEL Portfolio for industrial applications

Nanostack pulsed laser diodes

Laser diodes in a variety of package designs (TO56, Plastic, SMT)

Part No.	Stack	Wave- length	Emitter	Aperture	Output power	Forward current*	Operating voltage	Threshold current	Beam diver- gence	Operating range
	#	[nm]	#	[µm]	[W]	[A]	[V]	[A]	[FWHM]	[°C]
SPL PL90	1	905	1	200	25	30	4.3	0.75	9° x 25°	-40+85
SPL PL90_3E	3	905	1	200	50	20	9	0.75	9° x 25°	-40+85
SPL PL90_3	3	905	1	200	75	30	9	0.75	9° x 25°	-40+85
SPL LL90_3	3	905	3	200	70	_	20	-	15° x 30°	-40+85
SPL TL 90AT08 SPL UL 90AT08	3	905	1	220	125	40	10.8	0.6	10° x 25°	-40+85
SPL S1L90A_3 SPL S4L90A_3	3	905	1 or 4	220	125	40	10.8	0.6	10° x 25°	-40+105

<100 ns widtl at 1 kHz rate> <12 ns widtl at 1 kHz rate>

VCSEL Portfolio for Time-of-Flight / 3D Sensing BIDOS® P 2835 C

High-Power VCSEL with 2835 ceramic packaging

	Part No.	Wave- length	Emitter	Optics	Eye Safety	Recommended max. Peak Power CW, 100% DC	Recommended max. Peak Power 100µs, 1% DC	Recommended max. Peak Powe 5ns, 0.1% DC
		[nm]	#	[°]		[W]	[W]	[W]
	V102C021A-850	850	281	60 x 45	_	1.5	5.5	32
	V102C121A-850	850	281	60 x 45	MPD	1.5	5.5	32
	V00100	850	281	72 x 58	_	1.5	5.5	32
	V107C021A-850	850	770	60 x 45	_	3.5	10	52
	V00129	850	770	72 x 58	_	3.5	10	52
	V107C000A-850	850	770	None	_	3.5	12	62
	V102C021A-940	940	281	60 x 45	_	1.5	5.5	32
	V102C121A-940	940	281	60 x 45	MPD	1.5	5.5	32
	V00065	940	550	60 x 45	_	2.5	7	44
	V105C121A-940	940	550	60 x 45	MPD	2.5	7	44
	V105C131A-940	940	550	72 x 58	MPD	2.5	7	44
	V105C141A-940	940	550	110 x 80	MPD	2.5	7	44
	V00075	940	770	60 x 45	_	3.5	10	52
	V00130	940	770	72 x 58	_	3.5	10	52
w-F	Power VCSEL with	3020 PLC	C packag	ing by VIX	AR®			
	V00002	000	4	None	_	0.007	0.015	_
-	V00013	- 680	1	None	_	0.0015	0.003	_
•	V00147	850	3	None	_	0.070	0.150	0.330

	Part No.	Wave- length	Emitter	Optics	Eye Safety	Recommended max. Peak Power CW, 100% DC	Recommended max. Peak Power 100µs, 1% DC	Recommended max. Peak Powe 5ns, 0.1% DC
		[nm]	#	[°]		[W]	[W]	[W]
	V102C021A-850	850	281	60 x 45	_	1.5	5.5	32
	V102C121A-850	850	281	60 x 45	MPD	1.5	5.5	32
	V00100	850	281	72 x 58	_	1.5	5.5	32
	V107C021A-850	850	770	60 x 45	_	3.5	10	52
	V00129	850	770	72 x 58	_	3.5	10	52
	V107C000A-850	850	770	None	_	3.5	12	62
	V102C021A-940	940	281	60 x 45	_	1.5	5.5	32
	V102C121A-940	940	281	60 x 45	MPD	1.5	5.5	32
	V00065	940	550	60 x 45	_	2.5	7	44
	V105C121A-940	940	550	60 x 45	MPD	2.5	7	44
	V105C131A-940	940	550	72 x 58	MPD	2.5	7	44
	V105C141A-940	940	550	110 x 80	MPD	2.5	7	44
	V00075	940	770	60 x 45	_	3.5	10	52
	V00130	940	770	72 x 58	_	3.5	10	52
ow-P	ower VCSEL with	3020 PLC	C packag	ing by VIX	AR®			
	V00002	000		None	_	0.007	0.015	_
5	V00013	- 680	1	None	_	0.0015	0.003	_
	V00147	850	3	None	_	0.070	0.150	0.330

Vertical Cavity Surface Emitting Lasers (VCSELs)

Benefits:

- Stable light with a short cavity height - Multiple lasers (apertures) are
- build on a VCSEL chip to increase power
- Large quantity of apertures
- reduce speckle in IR illumination
- Smart Access an Authentication

Edge Emitting Lasers (EELs)

Benefits:

- Produce high power from a single spot due to the long cavity length
- Narrow rectangular design profile requiring collimation
- Robust Package (TO)
- Very good cost & performance ratio and long history in serving the market with outstanding quality (plastic)
- Industry Grade qualification
- Easy to use within pick & place and reflow soldering processes (SMT)
- AM Grade qualification for SMT and Smart Lasers

Features

- Different package designs available
- (TO, Plastic, SMT)
- Serving a great variety of different power classes
- Well established wavelength of 905 nm
- Leading-edge in EEL chip (Nanostack Technology)
- Optimized for short pulsed ToF applications

Applications

- Home Automation
- Industrial Sensing
- Last Mile Delivery
- Laser Rangefinder
- Pulsed Laser LiDAR application

Characteristics

- Highest peak power and highest average power in the market
- High power within a small area
- High efficiency
- Low Cost in high volumes (plastic)
- Outstanding Rth and inductance optimized package (SMT)

 Features Compact footprint with superior mechanical robustness and leading-edge VCSEL technology inside Applications 3D Sensing for Mobile Devices and Industry Robotics and Automated Guided Websieles 	 Characteristics Optimal power density in compact package Integrated optics for delivering desired field of view (FoV), eliminating the need for secondary optics Versions with integrated photodiode to detect loss of diffusor and imperfect
 Robotics and Automated Guided Vehicles Smart Access and Payment 	of diffusor and imperfect diffraction grading

Infrared lasers for industrial LiDAR applications

Asia

OSRAM Opto Semiconductors (China) Co., Ltd.

No.57, Xi Qin Road, Wuxi Xinwu District, Jiangsu Province, China, 214000 E-mail: prasia@osram-os.com

Europe

OSRAM Opto Semiconductors GmbH Leibnizstrasse 4

93055 Regensburg, Germany Phone: +49 941 850 1700 Fax: +49 941 850 3302 E-mail: support@osram-os.com

USA

OSRAM Opto Semiconductors Inc.

1150 Kifer Road, Suite 100 Sunnyvale, CA 94086, USA Main Phone number: (408) 962-3700 Main Fax: (408) 738-9120 Inbound Toll Free: (866) 993-5211 E-mail: info@osram-os.com

